futilehdl/src/frontend.rs

350 lines
11 KiB
Rust

use std::collections::BTreeMap;
use crate::builtin_cells::get_builtins;
use crate::parser;
use crate::rtlil;
use crate::rtlil::RtlilWrite;
/// lots of code is still not width-aware, this constant keeps track of that
const TODO_WIDTH: u32 = 1;
fn make_pubid(id: &str) -> String {
"\\".to_owned() + id
}
#[derive(Debug)]
pub enum CompileErrorKind {
UndefinedReference(String),
BadArgCount { received: usize, expected: usize },
}
#[derive(Debug)]
pub struct CompileError {
kind: CompileErrorKind,
}
impl CompileError {
fn new(kind: CompileErrorKind) -> Self {
Self { kind }
}
}
pub enum GenericParam<T> {
Unsolved,
Solved(T),
}
pub enum Type {
/// a wire of some width
Wire(GenericParam<u32>),
}
impl Type {
pub fn wire() -> Self {
Self::Wire(GenericParam::Unsolved)
}
}
pub struct CallArgument {
pub name: String,
pub atype: Type,
}
// module that can be instantiated like a function
pub struct Callable {
pub name: String,
pub args: Vec<CallArgument>,
pub ret: Type,
pub instantiate: Box<dyn Fn(&str, &[rtlil::SigSpec], &rtlil::SigSpec) -> rtlil::Cell>,
}
/// A user-defined signal
pub struct Signal {
/// the user-visible name of the signal
pub name: String,
/// the id of the signal in RTLIL
pub il_id: String,
/// the type of the signal
pub typ: Type,
// unique ID of the signal
// pub uid: u64,
}
impl Signal {
fn sigspec(&self) -> rtlil::SigSpec {
rtlil::SigSpec::Wire(self.il_id.to_owned())
}
}
/// context used when generating processes
struct ProcContext {
updates: Vec<(rtlil::SigSpec, rtlil::SigSpec)>,
next_sigs: BTreeMap<String, rtlil::SigSpec>,
}
struct Context {
/// map callable name to callable
callables: BTreeMap<String, Callable>,
/// map signal name to Signal
signals: BTreeMap<String, Signal>
}
impl Context {
fn get_signal(&self, signame: &str) -> Option<&Signal> {
self.signals.get(signame)
}
fn try_get_signal(&self, signame: &str) -> Result<&Signal, CompileError> {
self.get_signal(signame)
.ok_or(CompileError::new(CompileErrorKind::UndefinedReference(signame.to_owned())))
}
}
fn lower_process_statement(
ctx: &Context,
pctx: &mut ProcContext,
module: &mut rtlil::Module,
stmt: &parser::proc::ProcStatement,
) -> Result<rtlil::CaseRule, CompileError> {
let rule = match stmt {
parser::proc::ProcStatement::IfElse(_) => todo!("if/else unimplemented"),
parser::proc::ProcStatement::Assign(assig) => {
// FIXME: actually store this
let next_sig;
if let Some(sig) = pctx.next_sigs.get(assig.lhs) {
next_sig = sig.clone();
}
else {
let next_gen_id = format!("${}$next", assig.lhs);
module.add_wire(rtlil::Wire::new(&next_gen_id, TODO_WIDTH, None));
next_sig = rtlil::SigSpec::Wire(next_gen_id);
pctx.next_sigs.insert(assig.lhs.to_owned(), next_sig.clone());
// trigger the modified value to update
pctx.updates.push((
ctx.try_get_signal(assig.lhs)?.sigspec(),
next_sig.clone(),
));
};
let next_expr_wire = lower_expression(ctx, module, &assig.expr)?;
rtlil::CaseRule {
assign: vec![(next_sig.clone(), next_expr_wire)],
switches: vec![],
}
}
parser::proc::ProcStatement::Match(match_block) => {
let match_sig = lower_expression(ctx, module, &match_block.expr)?;
let mut cases = vec![];
for arm in &match_block.arms {
let case = lower_process_statement(ctx, pctx, module, &arm.1)?;
let compare_sig = lower_expression(ctx, module, &arm.0)?;
cases.push((compare_sig, case));
}
let switch_rule = rtlil::SwitchRule {
signal: match_sig,
cases,
};
rtlil::CaseRule {
assign: vec![],
switches: vec![switch_rule],
}
}
parser::proc::ProcStatement::Block(_) => todo!("blocks unimplemented"),
};
Ok(rule)
}
fn lower_process(
ctx: &Context,
module: &mut rtlil::Module,
process: &parser::proc::ProcBlock,
) -> Result<(), CompileError> {
let mut pctx = ProcContext {
updates: vec![],
next_sigs: BTreeMap::new(),
};
let mut cases = vec![];
for stmt in &process.items {
let case = lower_process_statement(ctx, &mut pctx, module, stmt)?;
cases.push(case);
}
let sync_sig = ctx.try_get_signal(process.net.fragment())?;
let sync_cond = rtlil::SyncCond::Posedge(sync_sig.sigspec());
let sync_rule = rtlil::SyncRule {
cond: sync_cond,
assign: pctx.updates,
};
if cases.len() != 1 {
panic!("only one expression per block, for now")
}
assert_eq!(cases.len(), 1);
let ir_proc = rtlil::Process {
id: module.make_genid("proc"),
root_case: cases.into_iter().next().unwrap(),
sync_rules: vec![sync_rule],
};
module.add_process(ir_proc);
Ok(())
}
fn desugar_operation<'a>(op: parser::Operation<'a>) -> parser::Call<'a> {
match op {
parser::Operation::And { a, b } => {
let a = desugar_expression(a);
let b = desugar_expression(b);
parser::Call {
name: "and".into(),
args: vec![a, b]
}
},
parser::Operation::Or { a, b } => {
let a = desugar_expression(a);
let b = desugar_expression(b);
parser::Call {
name: "or".into(),
args: vec![a, b]
}
}
parser::Operation::Xor { a, b } => {
let a = desugar_expression(a);
let b = desugar_expression(b);
parser::Call {
name: "xor".into(),
args: vec![a, b]
}
}
parser::Operation::Not(a) => {
let a = desugar_expression(a);
parser::Call {
name: "not".into(),
args: vec![a]
}
}
}
}
fn desugar_expression<'a>(expr: parser::Expression<'a>) -> parser::Expression<'a> {
// TODO: allow ergonomic traversal of AST
match expr {
parser::Expression::Ident(_) => expr,
parser::Expression::Literal(_) => expr,
parser::Expression::Call(mut call) => {
let new_args = call.args.into_iter().map(|argex| desugar_expression(argex)).collect();
call.args = new_args;
parser::Expression::Call(call)
},
parser::Expression::Operation(op) => {
parser::Expression::Call(Box::new(desugar_operation(*op)))
},
}
}
fn lower_expression(
ctx: &Context,
module: &mut rtlil::Module,
expr: &parser::Expression,
) -> Result<rtlil::SigSpec, CompileError> {
let expr = desugar_expression(expr.clone());
match expr {
parser::Expression::Ident(ident) => {
let signal = ctx.try_get_signal(ident)?;
Ok(signal.sigspec())
},
parser::Expression::Call(call) => {
let args_resolved = call
.args
.iter()
.map(|expr| lower_expression(ctx, module, expr))
.collect::<Result<Vec<_>, _>>()?;
let callable = ctx
.callables
.get(call.name.fragment() as &str)
.ok_or_else(|| {
CompileError::new(CompileErrorKind::UndefinedReference(
call.name.fragment().to_string(),
))
})?;
if args_resolved.len() != callable.args.len() {
return Err(CompileError::new(CompileErrorKind::BadArgCount {
expected: callable.args.len(),
received: args_resolved.len(),
}));
}
let cell_id = module.make_genid(&callable.name);
let output_gen_id = format!("{}$out", &cell_id);
module.add_wire(rtlil::Wire::new(&output_gen_id, TODO_WIDTH, None));
let output_gen_wire = rtlil::SigSpec::Wire(output_gen_id);
let cell =
(*callable.instantiate)(&cell_id, args_resolved.as_slice(), &output_gen_wire);
module.add_cell(cell);
Ok(output_gen_wire)
}
// TODO: instantiate operators directly here instead of desugaring, once the callable infrastructure improves
// to get better errors
parser::Expression::Operation(_op) => todo!("operators not yet implemented"),
parser::Expression::Literal(lit) => Ok(rtlil::SigSpec::Const(lit as i64, TODO_WIDTH)),
}
}
fn lower_assignment(
ctx: &Context,
module: &mut rtlil::Module,
assignment: parser::Assign,
) -> Result<(), CompileError> {
let target_id = ctx.try_get_signal(assignment.lhs)?.sigspec();
let return_wire = lower_expression(ctx, module, &assignment.expr)?;
module.add_connection(&target_id, &return_wire);
Ok(())
}
pub fn lower_module(pa_module: parser::Module) -> Result<String, CompileError> {
let mut writer = rtlil::ILWriter::new();
let mut ir_module = rtlil::Module::new(make_pubid(pa_module.name));
let mut context = Context {
callables: get_builtins()
.into_iter()
.map(|clb| (clb.name.to_owned(), clb))
.collect(),
signals: BTreeMap::new(),
};
writer.write_line("autoidx 1");
for (idx, port) in pa_module.ports.iter().enumerate() {
let sig = Signal {
name: port.net.name.to_owned(),
il_id: make_pubid(port.net.name),
typ: Type::Wire(GenericParam::Solved(port.net.width.unwrap_or(1) as u32))
};
let sig = context.signals.entry(port.net.name.to_owned()).or_insert(sig);
let dir_option = match port.direction {
parser::PortDirection::Input => rtlil::PortOption::Input(idx as i32 + 1),
parser::PortDirection::Output => rtlil::PortOption::Output(idx as i32 + 1),
};
let wire = rtlil::Wire::new(
sig.il_id.to_owned(),
port.net.width.unwrap_or(1) as u32,
Some(dir_option),
);
ir_module.add_wire(wire);
}
for item in pa_module.items {
match item {
parser::ModuleItem::Assign(assignment) => {
lower_assignment(&context, &mut ir_module, assignment)?
}
parser::ModuleItem::Proc(proc) => lower_process(&context, &mut ir_module, &proc)?,
}
}
ir_module.write_rtlil(&mut writer);
Ok(writer.finish())
}