use std::cell::Cell; use std::collections::BTreeMap; use super::parser; use crate::rtlil; pub use callable::Callable; pub use types::{Type, TypeStruct, TypingContext}; mod callable; #[cfg(never)] pub mod lowering; pub mod typed_ir; pub mod types; #[cfg(never)] use crate::builtin_cells::get_builtins; // pub use lowering::lower_module; /// lots of code is still not width-aware, this constant keeps track of that const TODO_WIDTH: u32 = 1; fn make_pubid(id: &str) -> String { "\\".to_owned() + id } #[derive(Debug)] pub enum CompileErrorKind { UndefinedReference(String), BadArgCount { received: usize, expected: usize }, TodoError(String), TypeError { expected: Type, found: Type }, } #[derive(Debug)] pub struct CompileError { kind: CompileErrorKind, } impl CompileError { fn new(kind: CompileErrorKind) -> Self { Self { kind } } } /// A user-defined signal pub struct Signal { /// the user-visible name of the signal pub name: String, /// the id of the signal in RTLIL pub il_id: String, /// the type of the signal pub typ: Type, // unique ID of the signal // pub uid: u64, } impl Signal { fn sigspec(&self) -> rtlil::SigSpec { rtlil::SigSpec::Wire(self.il_id.to_owned()) } } pub struct Context { /// map callable name to callable callables: BTreeMap, /// type names typenames: BTreeMap, types: TypingContext, /// map signal name to Signal signals: BTreeMap, /// incrementing counter for unique IDs ids: Counter, } struct Counter(Cell); impl Counter { fn new() -> Counter { Counter(Cell::new(0)) } fn next(&self) -> usize { let next = self.0.get() + 1; self.0.set(next); next } } impl Context { pub fn new() -> Self { let tcx = TypingContext::new(); Context { callables: BTreeMap::new(), signals: BTreeMap::new(), types: TypingContext::new(), typenames: [("Logic".to_string(), tcx.primitives.logic)].into(), ids: Counter::new(), } } fn try_get_signal(&self, signame: &str) -> Result<&typed_ir::Signal, CompileError> { self.signals.get(signame).ok_or_else(|| { CompileError::new(CompileErrorKind::UndefinedReference(signame.to_owned())) }) } fn try_get_type(&self, typename: &str) -> Result { self.typenames.get(typename).copied().ok_or_else(|| { CompileError::new(CompileErrorKind::UndefinedReference(typename.to_owned())) }) } fn try_get_callable(&self, callname: &str) -> Result<&Callable, CompileError> { self.callables.get(callname).ok_or_else(|| { CompileError::new(CompileErrorKind::UndefinedReference(callname.to_owned())) }) } fn type_expression( &self, expr: &parser::expression::Expression, ) -> Result { use parser::expression::Expression; let id = typed_ir::ExprId(self.ids.next() as u32); let t_expr = match expr { Expression::Path(name) => { let signal = self.try_get_signal(name)?; typed_ir::Expr { id, kind: typed_ir::ExprKind::Path(signal.id), typ: signal.typ, } } Expression::Literal(_) => todo!(), Expression::UnOp(op) => self.type_expression(&op.a)?, Expression::BinOp(op) => { let (a, b) = (self.type_expression(&op.a)?, self.type_expression(&op.b)?); typed_ir::Expr { id, kind: typed_ir::ExprKind::Call { called: typed_ir::DefId(99), args: vec![a, b], }, typ: self.types.primitives.elabnum, } } Expression::Call(call) => { let args_resolved = call .args .iter() .map(|expr| self.type_expression(expr)) .collect::, _>>()?; typed_ir::Expr { id, kind: typed_ir::ExprKind::Call { called: typed_ir::DefId(99), args: args_resolved, }, typ: self.types.primitives.elabnum, } } }; Ok(t_expr) } fn type_comb( &mut self, comb: &parser::comb::CombBlock, ) -> Result { let mut signals = Vec::new(); for port in comb.ports.iter() { let sig_id = self.ids.next(); let sig_typename = &port.net.typ; let sig_type = self.try_get_type(sig_typename.name.fragment())?; let sig = typed_ir::Signal { id: typed_ir::DefId(sig_id as u32), typ: sig_type, }; signals.push(sig.clone()); self.signals.insert(port.net.name.to_string(), sig); } let ret_typename = &comb.ret.name; let ret_type = self.try_get_type(ret_typename.fragment())?; let root_expr = self.type_expression(&comb.expr)?; // TODO: more sophisticated type compat check if root_expr.typ != ret_type { let expected = ret_type; let found = root_expr.typ; return Err(CompileError::new(CompileErrorKind::TypeError { expected, found, })); } Ok(typed_ir::Block { signals, expr: root_expr, }) } pub fn type_module(&mut self, module: parser::Module) -> Result { for item in module.items { let block = match &item { parser::ModuleItem::Comb(comb) => self.type_comb(comb)?, parser::ModuleItem::Proc(_) => todo!(), parser::ModuleItem::State(_) => todo!(), }; return Ok(block); } Err(CompileError::new(CompileErrorKind::TodoError( "no blocks in module".to_string(), ))) } }