break things by adding first hacky type system

main
NotAFile 2022-01-23 21:04:19 +01:00
parent 6317987ed6
commit ec87f29c5c
4 changed files with 151 additions and 64 deletions

View File

@ -1,4 +1,5 @@
use crate::frontend::{CallArgument, Callable, Type};
use crate::frontend::{Callable};
use crate::frontend::types::{Type, TypeStruct};
use crate::rtlil;
use crate::rtlil::SigSpec;
@ -38,39 +39,41 @@ fn instantiate_binop(celltype: &str, id: &str, args: &[SigSpec], ret: &SigSpec)
cell
}
fn make_binop_callable(name: &str, celltype: &'static str) -> Callable {
fn make_binop_callable<'ctx>(name: &str, celltype: &'static str) -> Callable<'ctx> {
// FIXME: CRIMES CRIMES CRIMES
let logic_type: &'static TypeStruct = Box::leak(Box::new(TypeStruct::logic_infer()));
let args = vec![
CallArgument {
name: "A".to_owned(),
atype: Type::wire(),
},
CallArgument {
name: "B".to_owned(),
atype: Type::wire(),
},
(
Some("a".to_owned()),
logic_type,
),
(
Some("b".to_owned()),
logic_type,
),
];
Callable {
name: name.to_owned(),
args,
ret: Type::wire(),
instantiate: Box::new(move |id, args, ret| instantiate_binop(celltype, id, args, ret)),
ret_type: Some(logic_type),
}
}
fn make_unnop_callable(name: &str, celltype: &'static str) -> Callable {
let args = vec![CallArgument {
name: "A".to_owned(),
atype: Type::wire(),
}];
fn make_unnop_callable<'ctx>(name: &str, celltype: &'static str) -> Callable<'ctx> {
// FIXME: CRIMES CRIMES CRIMES
let logic_type: &'static TypeStruct = Box::leak(Box::new(TypeStruct::logic_infer()));
let args = vec![(
Some("A".to_owned()),
logic_type,
)];
Callable {
name: name.to_owned(),
args,
ret: Type::wire(),
instantiate: Box::new(move |id, args, ret| instantiate_unop(celltype, id, args, ret)),
ret_type: Some(logic_type),
}
}
pub fn get_builtins() -> Vec<Callable> {
pub fn get_builtins<'ctx>() -> Vec<Callable<'ctx>> {
vec![
make_binop_callable("and", "$and"),
make_binop_callable("or", "$or"),

View File

@ -4,6 +4,11 @@ use crate::builtin_cells::get_builtins;
use crate::parser;
use crate::rtlil;
use crate::rtlil::RtlilWrite;
pub use callable::Callable;
pub use types::{Type, TypeStruct};
mod callable;
pub mod types;
/// lots of code is still not width-aware, this constant keeps track of that
const TODO_WIDTH: u32 = 1;
@ -29,48 +34,19 @@ impl CompileError {
}
}
pub enum GenericParam<T> {
Unsolved,
Solved(T),
}
pub enum Type {
/// a wire of some width
Wire(GenericParam<u32>),
}
impl Type {
pub fn wire() -> Self {
Self::Wire(GenericParam::Unsolved)
}
}
pub struct CallArgument {
pub name: String,
pub atype: Type,
}
// module that can be instantiated like a function
pub struct Callable {
pub name: String,
pub args: Vec<CallArgument>,
pub ret: Type,
pub instantiate: Box<dyn Fn(&str, &[rtlil::SigSpec], &rtlil::SigSpec) -> rtlil::Cell>,
}
/// A user-defined signal
pub struct Signal {
pub struct Signal<'ctx> {
/// the user-visible name of the signal
pub name: String,
/// the id of the signal in RTLIL
pub il_id: String,
/// the type of the signal
pub typ: Type,
pub typ: Type<'ctx>,
// unique ID of the signal
// pub uid: u64,
}
impl Signal {
impl<'ctx> Signal<'ctx> {
fn sigspec(&self) -> rtlil::SigSpec {
rtlil::SigSpec::Wire(self.il_id.to_owned())
}
@ -82,14 +58,16 @@ struct ProcContext {
next_sigs: BTreeMap<String, rtlil::SigSpec>,
}
struct Context {
struct Context<'ctx> {
/// map callable name to callable
callables: BTreeMap<String, Callable>,
callables: BTreeMap<String, Callable<'ctx>>,
/// types
types: Vec<TypeStruct<'ctx>>,
/// map signal name to Signal
signals: BTreeMap<String, Signal>,
signals: BTreeMap<String, Signal<'ctx>>,
}
impl Context {
impl<'ctx> Context<'ctx> {
fn get_signal(&self, signame: &str) -> Option<&Signal> {
self.signals.get(signame)
}
@ -269,22 +247,22 @@ fn lower_expression(
))
})?;
if args_resolved.len() != callable.args.len() {
if args_resolved.len() != callable.argcount() {
return Err(CompileError::new(CompileErrorKind::BadArgCount {
expected: callable.args.len(),
expected: callable.argcount(),
received: args_resolved.len(),
}));
}
let cell_id = module.make_genid(&callable.name);
let cell_id = module.make_genid(&callable.name());
let output_gen_id = format!("{}$out", &cell_id);
module.add_wire(rtlil::Wire::new(&output_gen_id, TODO_WIDTH, None));
let output_gen_wire = rtlil::SigSpec::Wire(output_gen_id);
let cell =
(*callable.instantiate)(&cell_id, args_resolved.as_slice(), &output_gen_wire);
module.add_cell(cell);
// let cell =
// (*callable.instantiate)(&cell_id, args_resolved.as_slice(), &output_gen_wire);
// module.add_cell(cell);
Ok(output_gen_wire)
}
// TODO: instantiate operators directly here instead of desugaring, once the callable infrastructure improves
@ -311,16 +289,21 @@ pub fn lower_module(pa_module: parser::Module) -> Result<String, CompileError> {
let mut context = Context {
callables: get_builtins()
.into_iter()
.map(|clb| (clb.name.to_owned(), clb))
.map(|clb| (clb.name().to_owned(), clb))
.collect(),
signals: BTreeMap::new(),
types: vec![],
};
writer.write_line("autoidx 1");
for (idx, port) in pa_module.ports.iter().enumerate() {
let sigtype = TypeStruct::logic_width(port.net.width.unwrap_or(1) as u32);
// FIXME: CRIMES CRIMES CRIMES
let sigtype = Box::leak(Box::new(sigtype));
let sig = Signal {
name: port.net.name.to_owned(),
il_id: make_pubid(port.net.name),
typ: Type::Wire(GenericParam::Solved(port.net.width.unwrap_or(1) as u32)),
typ: sigtype,
};
let sig = context
.signals

17
src/frontend/callable.rs Normal file
View File

@ -0,0 +1,17 @@
use super::types::Type;
pub struct Callable<'ty> {
pub name: String,
pub args: Vec<(Option<String>, Type<'ty>)>,
pub ret_type: Option<Type<'ty>>,
}
impl<'ty> Callable<'ty> {
pub fn name(&self) -> &str {
&self.name
}
pub fn argcount(&self) -> usize {
self.args.len()
}
}

84
src/frontend/types.rs Normal file
View File

@ -0,0 +1,84 @@
/// Alias for &TypeStruct to reduce repetition
/// and make futura migration to interning
/// easier
pub type Type<'ty> = &'ty TypeStruct<'ty>;
pub struct TypeStruct<'ty> {
kind: TypeKind<'ty>,
}
pub enum TypeKind<'ty> {
/// Elaboration-time types
ElabType(ElabKind),
/// Signal/Wire of generic width
Logic(ElabData<'ty>),
/// UInt of generic width
UInt(ElabData<'ty>),
/// Callable
Callable,
}
struct ElabData<'ty> {
typ: Type<'ty>,
value: ElabValue<'ty>,
}
enum ElabValue<'ty> {
/// the value is not given and has to be inferred
Infer,
/// the value is given as some byte representation
Concrete(ElabValueData<'ty>),
}
enum ElabValueData<'ty> {
U32(u32),
Bytes(&'ty [u8]),
}
/// Types that are only valid during Elaboration
enum ElabKind {
/// general, unsized number type
Num
}
/// Helper functions to create primitive types
impl<'ty> TypeStruct<'ty> {
/// a logic signal with inferred width
pub fn logic_infer() -> Self {
Self {
kind: TypeKind::Logic(ElabData {
typ: &TypeStruct {
kind: TypeKind::ElabType(ElabKind::Num)
},
value: ElabValue::Infer,
})
}
}
/// a logic signal with known width
pub fn logic_width(width: u32) -> Self {
Self {
kind: TypeKind::Logic(ElabData::u32(width))
}
}
/// return an elaboration number type
pub fn elab_num() -> Self {
Self {
kind: TypeKind::ElabType(ElabKind::Num)
}
}
}
/// Helper functions to create primitive elaboration values
impl<'ty> ElabData<'ty> {
/// an integer
pub fn u32(val: u32) -> Self {
Self {
typ: &TypeStruct {
kind: TypeKind::ElabType(ElabKind::Num)
},
value: ElabValue::Concrete(ElabValueData::U32(val))
}
}
}